

The University of Lille and the Centrale Lille Institute

Module handbook for Semester 1

	9 MANDATORY MODULES				
1	Mathematical Tools for Engineering	5 ECTS			
2	Numerical Methods in Engineering	5 ECTS			
3	Continuum Mechanics	5 ECTS			
4	Constitutive Laws	5 ECTS			
5	Dynamics and Vibrations	5 ECTS			
6	Experimental Mechanics	5 ECTS			

Module #1	MATHEMATICAL TOOLS FOR ENGINEERING				
Information	<u>Credit Points :</u> 5 ECTS	<u>Workload :</u> 56h	<u>Mode :</u> compulsory	<u>Offered :</u> 1st semester	
Institution in charge	Université de Lille – Centrale Lille Institut				
Instructors	A. Oueslati, P. Gosselet, T. Dao				
Contents	Tensorial Analysis. Tensor product. Contraction. Raising and lowering indices. Covariant derivative of tensor fields. Chris symbols. Complex analysis. Holomorphic functions and Cauchy's integral formula. Meromorphic functions and residues Linear ordinary differential equations (ODEs). Special functions and their properties. Fourier and Laplace transforms. Sp analysis. Convolution. Systems of ODEs, resolvant matrix and Wronskian. Softwares for ODE solving. Classification of and second order partial differential equations (PDEs). Hyperbolic PDEs: method of characteristics, wave equation. B PDE's : Laplace's equation and harmonic functions. Parabolic PDEs: heat equation.			ohic functions and residues. and Laplace transforms. Spectral DE solving. Classification of first	
Examination	Written final exam				
Requirement for No specific requirement					
Learning outcomes	 On successful completion of the course, students will be able to: Demonstrate a practical foundation in calculus and its applications; Demonstrate an understanding of matrices and eigenvectors; Demonstrate an awareness of common mathematical themes underlying different areas of mathematics (such as that of linearity). 				

Module #2	NUMERICAL METHODS IN ENGINEERING				
Information	<u>Credit Points :</u> 5 ECTS	<u>Workload :</u> 50h	<u>Mode :</u> compulsory	<u>Offered :</u> 1st semester	
Institution in charge	Université de Lille – Centrale Lille Institut				
Instructors	JB. Colliat, T. Dao				
Contents	This course aims at presenting the basis and fundamentals of the Finite Element Method (FEM). The standard discr and origins of the Finite Element Method. Generalization of the finite element concepts. Galerkin-weighted re- variational approaches. 'Standard' and 'hierarchical' element shape functions: some general families of C0 continui elements and numerical integration – 'infinite' and 'singularity elements'. Problems in linear elasticity.Field proble conduction, electric and magnetic potential and fluid flow. The patch test, reduced integration, and non-conforming The time dimension – discrete approximation in time. Solution of non-linear algebraic equations. Introduction to in non-linear materials. A large part of the examples shall be devoted to the use and the analysis of some basic FE p			Galerkin-weighted residual and milies of C0 continuity. Mapped elasticity.Field problems – heat and non-conforming elements. ns. Introduction to inelastic and	
Examination	Written final exam				
Requirement for examination No specific requirement					
Learning outcomes	 On successful completion of the course, students will be able to: demonstrate a practical foundation in calculus and its applications; demonstrate an understanding of matrices and eigenvectors; demonstrate an awareness of common mathematical themes underlying different areas of mathematics (such as that of linearity). 			is of mathematics (such as that	

Module #3							
Information	<u>Credit Points :</u> 5 ECTS	<u>Workload :</u> 50h	<u>Mode :</u> compulsory	<u>Offered :</u> 1st semester			
Institution in charge	Université de Lille – Centrale	Lille Institut					
Instructors	P. Lecomte-Grosbras, A. Oue	slati, A. El Bartali					
ContentsThe purpose of this introductory course of continuum media, to present the basic concepts for modeling continuities simple constitutive laws for fluid and for solid.Chapter 1: The Cartesian tensor algebra and tensor and invariance relationship and basic operations: scalar, vector Laplacian. Stokes, Gauss and Green theorems; Reynold		oncepts for modeling continuous of id and for solid. nsor algebra and tensor analysis: of sic operations: scalar, vector, dyad	classical media, and to deduce co calculation of tensor fields scalar, ic products differential operators	vector and higher-order tensor			
	Chapter 2 : Kinematics of continuum media: body configuration and motion, description of motion through 2 approaches or Lagrangian and spatial or Eulerian), material derivative, velocity, acceleration, trajectory, streamline. Deformation tensor and strain deformation homogeneous equation of the movement kinematics of the rigid body, and the velocit tensor associated.						
	Chapter 3 : The dynamics of continuous media: conservation of mass, volume forces, contact forces, and Cauchy postuc conservation of momentum and angular momentum, equation of motion of a continuous medium, the properties of the stress terms cauchy, and simple stress state examples						
	Chapter 4: Energy: energy conservation, entropy and the first and second principle laws of thermodynamics.						
	Chapter 5 : The laws of classical behavior for simple fluids and solid : viscous Newtonian (compressible and incompressible), and applications to Fluid Mechanics: Navier-Stokes equations; linear elastic solid with small deformation, Navier equations. Examples of simple applications like fluid solid possible to obtain analytical solutions that illustrate the power of modeling and proposed.						

Examination	Written final exam
Requirement for examination No specific requirement	
Learning outcomes	 On successful completion of the course, students will be able to: demonstrate a practical foundation in calculus and its applications; demonstrate an understanding of matrices and eigenvectors; demonstrate an awareness of common mathematical themes underlying different areas of mathematics (such as that of linearity).

Module #4	CONSTITUTIVE LAWS				
Informations	<u>Credit Points :</u> 5 ECTS	<u>Workload :</u> 50h	<u>Mode :</u> compulsory	<u>Offered :</u> 1st semester	
Institution in charge	Université de Lille – Ce	entrale Lille Institut			
Instructors	JF. Shao, W. Shen				
Contents	to introduce general to Linear Elasticity: Hook decomposition into hy elastic coefficients, the Linear Viscoelasticity: formulation and corres Experimental curves for of some simple hype hardening and internal	The aim of this course is, within the framework of continuous mechanics, to focus on the standard constitutive laws and to introduce general tools. Linear Elasticity: Hooke's law, class of materials, isotropic material, experimental testing, potentials of the Elasticity, decomposition into hydrostatic and deviatoric parts of the strain and stress tensors. Thermodynamic restrictions on elastic coefficients, thermoelasticity. Linear Viscoelasticity: Kelvin-Voigt and Maxwell models, more general rheological models, 3D viscoelasticity, functional formulation and correspondence method using Laplace transform. Experimental curves for proportional and cyclic loadings, plastic yielding and Saint-Venant model. Elastoplastic response of some simple hyperstatic structures, von Mises, Tresca and Mohr-Coulomb models, isotropic and kinematical hardening and internal variables models. Hill inequality and Drucker stability condition, Prager condition of consistency.			
Examination	Written final exam				
Requirement for examination	No specific requirement				
Learning outcomes	 On successful completion of the course, students will be able to: demonstrate a practical foundation in calculus and its applications; demonstrate an understanding of matrices and eigenvectors; demonstrate an awareness of common mathematical themes underlying different areas of mathematics (such as that of linearity). 				

Module #5	DYNAMICS AND VIBRATIONS				
Informations	<u>Credit Points :</u> 5 ECTS	<u>Workload :</u> 48h	<u>Mode :</u> compulsory	<u>Offered :</u> 1st semester	
Institution in charge	Université de Lille – Centrale Li	ille Institut			
Instructors	J.F. Brunel, O. Thomas				
Contents	 The course presents the key theoretical tools of dynamical analysis of structures and introduces the standard numerical methods of approximation and resolution. Fundamentals: waves, resonance, damping. 1D systems. Vibration of strings and cables: Wave equation, general solution, eigenmodes and eigenfrequencies. orthogonality properties and Rayleigh quotient. Traction-compression vibration of rods. Bending vibrations of beams. Torsional vibration of shafts and other rotating systems. 2D and 3D systems. Vibration of plates. Wave propagation in 3D solids. P-waves and S-waves in isotropic elastic solids. Reflexion and transmission of waves. Rayleigh surface waves. Forced vibration problems. General method of resolution by mode superposition. Mechanical impedance method. Spectral analysis. Numerical methods. Finite element method. Resolution algorithms for eigenvalue problems. Time-integration schemes. 				
Examination	Written final exam				
Requirement for examination	n No specific requirement				
Learning outcomes	 On successful completion of the course students will be able to: demonstrate a practical foundation in calculus and its applications; demonstrate an understanding of matrices and eigenvectors; demonstrate an awareness of common mathematical themes underlying different areas of mathematics (such as that of linearity). 				

Module #6	EXPERIMENTAL MECHANICS			
Informations	<u>Credit Points :</u> 5 ECTS	<u>Workload :</u> 56h	<u>Mode :</u> compulsory	<u>Offered :</u> 1st semester
Institution in charge	Université de Lille - Ecole Centrale de Lille			
Instructors	A. El Bartali, P. Lecomte-Grosbras, D. Najjar, O. Mayeur, E. Davin, L. Patrouix			
Contents	The aim of this course is to introduce the conventional experimental mechanical test leading to identification the mechanical properties of materials. Part I : Introduction to sensors and testing machine Strain sensors, force sensors, Video extensometer and Digital Imaging Correlation, Testing machine and mechanical test. Part II : Experimental practice Experimental practice for the characterization of the linear elastic behavior of polymer and metals, non linear elasto-plastic behavior of composites materials, viscoelasticity and viscoplasticity of polymers and metals.			
Examination	Written final exam			
Requirement for examination	n No specific requirement			
Learning outcomes	 On successful completion of the course students will be able to: demonstrate a practical foundation in calculus and its applications; demonstrate an understanding of matrices and eigenvectors; demonstrate an awareness of common mathematical themes underlying different areas of mathematics (such as that of linearity). 			